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A B S T R A C T

Obesity is often accompanied by lower working memory (e.g., a lower ability to keep goal-relevant information
in mind) relative to healthy weight individuals. Understanding this relative working memory impairment has
important clinical implications, as working memory is thought to facilitate adherence to weight management
programs. Theoretical models of obesity, self-regulation, and inflammation suggest that inflammation plays a
role in obesity-related working memory impairments, but to date no study has tested this prediction. Therefore,
the current study examined whether inflammation statistically mediated the relationship between obesity and
working memory in a nationally representative dataset of U.S. adults from Wave IV of The National Longitudinal
Study of Adolescent to Adult Health (N= 11,546, age range 25–34). Inflammation was quantified via C-reactive
protein (CRP) level, and working memory was assessed using a modified digit span backward task. As expected,
cross-sectional analyses showed that a body mass index (BMI) indicative of obesity—as well as greater BMI when
BMI was analyzed continuously—and greater CRP were each related to lower working memory. Critically, we
found that CRP levels statistically mediated the relationships between obesity/greater BMI and working
memory, with CRP accounting for 44.1% of the variance explained in working memory by BMI. Moreover, these
findings held both with and without controlling for relevant covariates, including demographic characteristics
(e.g., age), socioeconomic status, and behavioral factors (e.g., smoking). Our results therefore point to in-
flammation as playing an important role in the relationship between obesity and working memory, and suggest
that interventions aimed at reducing inflammation may help lessen the cognitive burden of obesity.

1. Introduction

A common finding in obesity research is that obesity is associated
with lower cognitive performance, and it is perhaps most consistently
associated with relative deficits in executive functions (e.g., the higher
cognitive processes that enable planning, forethought, and goal-di-
rected action) (Liang et al., 2014; Rotge et al., 2017; Vainik et al., 2013;
Vainik et al., 2018; Yang et al., inpress a,b). For example, in our recent
meta-analysis which included 4904 overweight/obese participants
across 72 studies, we found that obesity was associated with broad
deficits in executive functions relative to healthy weight individuals,
including poorer cognitive flexibility, inhibition, and working memory
(Yang et al., 2018).

Working memory refers to the ability to keep information in mind

and mentally work with it (Diamond, 2013; see also Miyake and
Friedman, 2012). Although working memory is intimately related to
other higher cognitive functions, it can be distinguished from them on a
latent level (Miyake and Friedman, 2012). Working memory is im-
portant for self-regulation in temporally extended situations—such as
an extended weight loss management program—in that it permits
keeping goals recruited from long-term memory in mind, which is im-
portant in situations full of temptations and distractions (Hofmann
et al., 2011; Hofmann et al., 2012; Dohle et al., 2018). Working
memory capacity can also facilitate other components of self-regula-
tion, such as emotion regulation (Ilkowska and Engle, 2010; Schmeichel
et al., 2008). In addition, by keeping goals in mind, working memory
supports another executive function component—namely, inhibitory
control (i.e., the ability to inhibit thoughts or prepotent responses in
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order to engage in goal-directed rather than habitual actions)
(Diamond, 2013)—, which is also important for self-regulation (Dohle
et al., 2018; Yang et al., inpress a,b). Relative impairments in working
memory have a number of implications for obesity, as working memory
has been implicated in the self-regulation of eating behavior (Hofmann
et al., 2011; Hofmann et al., 2012; Dohle et al., 2018). For example,
relatively lower working memory performance (e.g., measured by vi-
suospatial span task) is associated with greater loss of control eating in
overweight individuals (e.g., Goldschmidt et al., 2018), less frequent
fruit and vegetable consumption (e.g., Allom and Mullan, 2014), and
more energy-dense food intake (e.g., Nyaradi et al., 2014; Whitelock
et al., 2018). Perhaps most notably, improving working memory ca-
pacity via training reduces emotional eating (Houben et al., 2016) and
food intake (Dassen et al., 2018a,b), though it should be noted that
although these studies found that working memory training decreased
participants’ weight relative to baseline, participants in a training
condition did not show a greater decrease in weight relative to baseline
than a control group (Dassen et al., 2018a,b; Houben et al., 2016). In
addition, it should be noted that there is some inconsistency in the
literature (e.g., Limbers and Young, 2015). In short, although there are
theoretical reasons to expect that poor working memory could con-
tribute to obesity, the empirical literature on this to date is relatively
sparse and somewhat inconsistent, highlighting the need for more re-
search in this area.

There is another possible reason to expect a potential link between
working memory and obesity in addition to the theoretical one given
above. In particular, obesity may also indirectly impair executive
functions including working memory through its effects on inflamma-
tion and inflammatory activity (Castanon et al., 2015; Lowe et al.,
2019; Lasselin et al., 2016; Miller and Spencer, 2014; Ottino-González
et al., 2019; Spyridaki et al., 2016). It is often thought that obesity may
confer a state of sustained, low-grade inflammation, originating from
adipose tissue and changes in gut microbiota composition (Gregor and
Hotamisligil, 2011; Boulangé et al., 2016). The inflammatory milieu of
obesity is characterized heightened levels of proinflammatory cytokines
(e.g., interleukin-6, IL-6; Park et al., 2010) and acute phase proteins
(e.g., C-reactive protein, CRP; Choi et al., 2013) relative to healthy
weight individuals. More important to the current manuscript, heigh-
tened inflammation can impair working memory (Beydoun et al., 2019;
Marsland et al., 2015; Trevizol et al., 2019; Windham et al., 2014). As
might be expected, then, in healthy younger and middle-aged adults,
inflammatory biomarkers have been inversely associated with working
memory (e.g., Marsland et al., 2015; Ottino-González et al., 2019).
These findings have been succinctly summarized in a recent theoretical
model, the immunologic model of self-regulatory failure, which pro-
poses that immune system activity—especially inflammatory activi-
ty—impairs executive functions including working memory and other
forms of self-regulation through its effects on the neural underpinnings
of those processes (e.g., the prefrontal cortex) (Shields et al., 2017). In
sum, obesity can upregulate basal inflammatory activity, and heigh-
tened basal inflammatory activity can in turn impair cognition.

Some studies have indeed found correlational support for the idea
that obesity impairs cognitive performance through its effects on in-
flammation. For example, two studies have found that CRP—considered
an important index of systemic inflammatory activity—was negatively
related to executive function (i.e., cognitive flexibility) in overweight or
obese individuals (Lasselin et al., 2016; Ottino-González et al., 2019).
Even more, two longitudinal studies have found that inflammation
mediated associations between components of executive function (e.g.,
attentional switching, verbal fluency) and obesity (Bourassa and Sbarra,
2017; Mac Giollabhui et al., 2019).

Despite the importance of the above findings, a crucial missing piece
in our understanding of obesity, cognition, and putative biological
mechanisms is that to date, no study has examined the role of in-
flammation in working memory within obesity (though see Trevizol
et al., 2019, for an examination of these associations in non-obese

individuals). The present study therefore examined whether in-
flammation statistically mediates the association between obesity and
lower working memory. We tested this possibility in a nationally re-
presentative sample of U.S. adults from Wave IV of The National
Longitudinal Study of Adolescent to Adult Health (Add Health).
Drawing on literature showing that obesity is associated with lower
working memory and that inflammation can impair working memory,
we hypothesized that inflammation would statistically mediate the as-
sociation between obesity and working memory. Moreover, we ex-
pected this mediational effect to hold with and without controlling for
relevant covariates.

2. Methods

2.1. Participants and procedure

Restricted cross-sectional data from Wave IV of Add Health were
used for this study (Harris et al., 2009). Of the 15,701 participants
interviewed in Wave IV, individuals who were not pregnant, had a CRP
level below 10 mg/L (e.g., individuals without acute infections, see
section 2.2.2, and see Supplemental Material for analyses including all
CRP levels), and had a body mass index (BMI) of normal weight
(18.5–24.9), overweight (25–29.9), or obese weight (above 29.9) were
selected for analysis. The final sample therefore consisted of the 11,546
participants (5699 females, Mage = 29.1, SDage = 1.76, age
range = 25–34) meeting these criteria with complete data for BMI,
CRP, and working memory, though only 10,715 participants had
complete data for all covariates considered (Table 1).

2.2. Measures

2.2.1. Body mass index
BMI was calculated using the standard formula weight (kilograms)

divided by height (meters) squared (BMI = kg/m2). Weight and height
were measured by the interviewer using a digital scale and measuring
tape, respectively. Obesity was defined as a BMI ≥ 30 kg/m2. The
decision to use obese vs. non-obese, rather than overweight/obese vs.
normal-weight as the independent variable was based on current evi-
dence indicating very small working memory impairment among
overweight individuals, with level of working memory in the over-
weight group more comparable to normal weight than obese in-
dividuals (Yang et al., 2018).

2.2.2. Inflammation
CRP was measured as a marker of systemic inflammation. In-depth

documentation of the Add Health hs-CRP assay and quality control are
available online (Whitsel et al., 2013). Briefly, CRP was assessed via
dried blood spots (DBS), which were collected immediately following
the completion of study questionnaires, and these DBS were stored in a
−70 °C freezer until assayed using a previously published sandwich
ELISA method (McDade et al., 2004) at the University of Washington,
Department of Laboratory Medicine. Cross-validation using paired
plasma samples and dried blood spots in a sample of 87 participants
indicated strong correlation and linear association between CRP con-
centrations from these two methods, r = 0.98 (Whitsel et al., 2013).
Sensitivity of the CRP assay was 0.035 mg/L, intra-assay variation was
8.1% and inter-assay variation was 11%. Natural log transformations
were applied to CRP levels to correct skewness (using the raw CRP
values did not alter the results; see Supplemental Material). Finally, as
mentioned above, we excluded participants with CRP levels> 10 mg/L
(n = 1817), as these a CRP level > 10 mg/L indicates acute infection
or other acute health condition, not basal inflammation (O’Connor
et al., 2009) (including values of CRP > 10 mg/L did not alter the
results; see Supplemental Material).
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2.2.3. Working memory
Working memory was measured using a modified digit span back-

ward task. In this task, the interviewer read strings of numbers and
asked the participant to repeat them in reverse (e.g., if the interviewer
said “5-1-7-4-2”, the correct response would be “2-4-7-1-5”). The task
began with a two-number string. Respondents had two possible trials to
recall the number series at each level, up to a total of seven possible
levels. If the respondent answered correctly on the first trial of a given
level, a second trial at that level was not administered at that level and
the task moved on to the next level. When the respondents could not
repeat a number series in reverse in either trial at a given level, the task
ended. The highest level a participant successfully passed was used as
the dependent variable (i.e., that participant’s backward digit span),
with higher scores indicating better working memory. Raw scores can
therefore range from 0 to 7.

2.2.4. Covariates
Demographic variables, socioeconomic status (SES), and behavioral

factors were considered as covariates because these variables have been
previously associated with BMI, CRP, and working memory (Claassen
et al., 2019; Milaniak and Jaffee, 2019).

Demographic variables consisted of age, sex and race. Approximate
current age was calculated by subtracting the respondent’s year of birth
from the year which Wave IV data was collected; sex was self-reported;
and race was identified by the interviewer.

SES was indexed using a conjunction of use of public assistance,
education, and income at Wave IV (Luo and Waite, 2005; Yang et al.,
2017). Use of public assistance (i.e., welfare) was categorized as (0) no
use of public assistance, or (1) use of public assistance; education was
categorized as (0) more than high school, or (1) high school or less; and
income was categorized as (0) above the bottom quartile of the sample’s
income distribution, or (1) in the bottom quartile of the sample’s in-
come distribution. These indices were summed to create a composite
measure of SES. SES could thus range from 0 to 3, with 3 representing
the lowest level of SES.

Behavioral factors included as covariates were smoking, alcohol use,
physical exercise, depressive symptoms, illnesses and medications. For
the coding of smoking, participants were asked, “During the past

30 days, on how many days did you smoke cigarettes?” Those who
smoked on one or more days were considered current smokers (Stanton
et al., 2016). For the coding of alcohol use: participants were asked,
“During the past 12 months, on how many days did you drink al-
cohol?”, and those who said they drank once a month or more were
considered drinkers (Stanton et al., 2016). Physical activity was cal-
culated as the sum of two items (“In the past 7 days, how many times
did you participate in individual sports such as running, wrestling,
swimming, cross-country skiing, cycle racing, or martial arts?” and “In
the past 7 days, how many times did you participate in gymnastics,
weight lifting, or strength training?”) that were coded as 0 = not at all,
1 = 1 time, 2 = 2 times, 3 = 3 times, 4 = 4 times, 5 = 5 times, 6 = 6
times, and 7 = 7 or more times. The sum of the two items could thus
range from 0 to 14. Depressive symptoms were measured using a
shortened version of the Center for Epidemiologic Studies Depression
Scale (CES-D) (Radloff, 1977). Ten items, with responses ranging from
zero (“never or rarely”) to three (“most of the time or all of the time”),
measured participants’ symptoms of depression in the past seven days.
The summed score could thus ranges from 0 to 30, with higher scores
indicating higher levels of depressive symptoms. The scale demon-
strated good internal consistency in this sample (α = 0.84). Finally,
illnesses and medications were assessed with checklists of recent health
conditions. Drawing on prior field-based, epidemiological research
(Shanahan et al., 2014) and in accordance with the Add Health doc-
umentation (Whitsel et al., 2013), we included the following covariates:
(a) Subclinical symptoms: a count of the number of symptoms the
participants reported, including cold or flu-like symptoms, fever, night
sweats, nausea or vomiting or diarrhea, blood in stool or in urine,
frequent urination, and skin rash or abscess in the past 2 weeks; (b)
Infectious/inflammatory diseases: a count of both lifetime diagnoses of
chronic conditions including asthma or chronic bronchitis or emphy-
sema, hepatitis C, and gum disease, active infection, injury, acute ill-
ness, surgery, and active seasonal allergies in the past 4 weeks; (c)
Medications that may affect CRP: a count of the number of relevant
medications used, including NSAID/Salicylate, Cox-2 inhibitors, in-
haled corticosteroids, corticotropin/glucocorticoids, anti-rheumatic/
anti-psoriatic, immunosuppressive, and anti-inflammatory medications.
Counts ≥3 for the illnesses and medications variables were collapsed to

Table 1
Sample Descriptive Characteristics.

Whole sample (N = 11546) Non-obese (n = 7611) Obese (n = 3935) p

Age (years) (M ± SD)a 29.1 ± 1.76 29.05 ± 1.76 29.20 ± 1.75 < 0.01
Sex (%)b < 0.01
Men 50.64% 49.38% 53.09%
Women 49.36% 50.62% 46.91%
Race (%)b < 0.01
White 71.11% 72.41% 68.97%
African American 21.49% 19.76% 24.95%
American Indian 0.94% 0.91% 1.02%
Asian 6.27% 6.92% 5.06%
SES (M ± SD)a 0.77 ± 0.92 0.72 ± 0.90 0.88 ± 0.95 < 0.01
Smoke status (%)b > 0.05
Smoker 37.33% 38.06% 36.77%
Non-smoker 61.90% 61.94% 63.23%
Drinking status (%)b < 0.01
Drinker 48.74% 52.26% 42.15%
Non-drinker 51.51% 47.74% 57.85%
Physical activity (M ± SD)a 1.70 ± 2.71 1.85 ± 2.78 1.41 ± 2.55 < 0.01
Depression symptoms (M ± SD)a 6.04 ± 4.67 5.88 ± 4.57 6.36 ± 4.86 < 0.01
Subclinical symptoms (M ± SD)a 0.41 ± 0.70 0.41 ± 0.69 0.43 ± 0.72 > 0.05
Illness (M ± SD)a 0.43 ± 0.66 0.42 ± 0.65 0.45 ± 0.68 < 0.01
Medication (M ± SD)a 0.61 ± 0.96 0.60 ± 0.95 0.63 ± 0.98 > 0.05
Body mass index (M ± SD)a 28.52 ± 6.65 24.73 ± 2.98 35.85 ± 5.56 < 0.01
Working memory (M ± SD)a 4.19 ± 1.51 4.26 ± 1.51 4.06 ± 1.50 < 0.01
C-reactive protein (raw values) (M ± SD)a 2.51 ± 2.38 1.90 ± 1.99 3.71 ± 2.61 < 0.01

Note: numbers may not sum to total sample number due to missing data. Valid percentages are shown for ease of interpretation. CRP means/SDs exclude participants
with values higher than 10 pg/mL, per our analytic strategy. M = mean; SD = standard deviation. aIndependent samples t test; bχ2 test.
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a value of “‘3”. Count of illnesses and medications variables could thus
range from 0 to 3.

2.3. Analytic strategy

Analyses were performed using R version 3.6.0. First, independent
samples t-tests and Pearson correlation analyses were conducted to
assess the relationships between obesity/BMI, working memory, and
CRP. In addition, multiple regressions were conducted to assess the
relationships between obesity/BMI, working memory, and CRP while
controlling for covariates. Finally, mediation of the association between
obesity and working memory via CRP (Fig. 1) was tested using the
mediation R package, version 4.4.7. The mediation model was also
run using BMI as a continuous measure to ensure that dichotomizing
the continuous variable of BMI did not alter the results. In the present
mediation analysis, the total effect (path c) of obesity on working
memory consists of a direct effect (path c’) of obesity on working
memory and an indirect effect (path a × b) of obesity on working
memory via the mediator, which is CRP. Path a represents the effect of
obesity on CRP, and path b is the effect of CRP on working memory.
Quasi-Bayesian approximation with 10,000 Monte Carlo draws was
used to estimate the total effect, direct effect, and mediated effect and
their credible intervals. All mediation analyses adjusted for covariates
(removing covariates did not alter the results; see Supplemental Mate-
rial).

3. Results

3.1. Correlations between obesity, working memory and CRP

For the primary variables of interest, independent samples t-tests
showed that obesity was associated with greater CRP, t
(11,544) = 43.55, mean difference = 1.81, 95% CI [1.73, 1.90],
p < .001, d = 0.86, and worse working memory performance, t
(11,544) = 6.71, mean difference = 0.20, 95% CI [0.14, 0.26],
p < .001, d = −0.13. Using BMI instead of obesity as a predictor
produced functionally equivalent results; Pearson correlation analyses
showed that greater BMI was associated with greater CRP, r
(11,544) = 0.43, 95% CI [0.42, 45], p < .001, and worse working
memory performance, r(11,544) = −0.06, 95% CI [−0.08, −0.04],
p < .001. Further, in support of our primary hypotheses, greater CRP
was also associated with worse working memory performance, r
(11,544) = −0.06, 95% CI [−0.08, −0.04], p < .001.

Controlling for covariates (listed in section 2.2.4) did not alter the
above pattern of results. In particular, multiple regression analyses
showed that obesity remained a significant predictor of CRP, β = 0.37,
95% CI [0.35, 0.39], p < .001, and worse working memory,
β = −0.04, 95% CI [−0.06, −0.02], p < .001, as did BMI
(βCRP = .43, 95% CICRP [0.41, 0.45], pCRP < .001; βworking

memory = −0.03, 95% CIworking memory [−0.05, −0.01], p = .001).
Similarly, CRP remained a significant predictor of worse working
memory performance, β =−0.04, 95% CI [−0.06, −0.02], p < .001.

In short, our primary variables of interest related to each other in the
hypothesized manner.

3.2. Examining CRP as mediator of the association between obesity and
lower working memory

Table 2 summarizes the results of the mediation analyses (path c,
path c’, and indirect effects in Fig. 1). In these analyses, obesity was
related to lower working memory (path c: β=−0.04, 95% CIc [−0.06,
−0.02], p < .001; path c’: β = −0.03, 95% CIc’ [−0.05, −0.01],
p = .010). Critically, and as hypothesized, there was a significant in-
direct effect of obesity on working memory via CRP, β = −0.01, 95%
CIab [−0.02, −0.00], p = .003, such that obese individuals showed
higher CRP levels than non-obese individuals, β = 0.37, 95% CI[0.35,
0.38], p < .001, and more CRP was related to lower working memory,
β = −0.03, CI[−0.05, −0.01], p = .003. Notably, this indirect effect
through CRP accounted for 30.2% of the variance explained in working
memory by obesity (proportion mediated = 0.30, 95% CI [0.10, 0.70],
p = .003).

Similar findings were observed when BMI was entered into the
model in place of obesity, with results showing that greater BMI was
directly related to poor working memory only when the indirect path
through CRP was not accounted for (path c: β = −0.03, 95%
CIc[−0.05, −0.01], p < .001; path c’: β = −0.02, 95% CIc’ [−0.04,
0.00], p = .103). Critically, as hypothesized, there was a significant
indirect effect via CRP, β = −0.01, 95% CIab [−0.02, −0.01],
p = .002, such that high BMI was associated with more CRP, β = 0.43,
95% CI [0.41, 0.45], p < .001, and more CRP was related to lower
working memory, β = −0.03, 95% CI [−0.05, −0.01], p = .003.
Notably, this indirect effect through CRP accounted for 44.1% of the
variance explained in working memory by BMI (proportion medi-
ated = 0.44, 95% CI [0.14,> 0.99], p = .002).

In short, obesity was indirectly associated with lower working
memory performance via relatively higher levels of CRP. This med-
iating effect of CRP was present when weight was analyzed categori-
cally (i.e., obese vs. non-obese) or continuously (i.e., BMI).

4. Discussion

Although some prior work has found links between obesity, in-
flammation, and lower working memory (Marsland et al., 2006; Yang
et al., 2018), no study to date had examined the role that inflammation
may play in obesity-related working memory deficits. We examined this
potential role, and found that inflammation statistically mediated the
association between obesity and working memory—accounting for
between 30% and 44% of the variance explained by excessive weight in
working memory—in a nationally representative young sample of U.S.
adults (mean age = 29). Our results therefore could be taken to in-
dicate that obesity-related inflammation may be one biological
pathway underpinning links between excessive weight and lower

Fig. 1. Diagram illustrating the mediation model examining associations be-
tween obesity and working memory via C-reactive protein.

Table 2
Models Testing Mediation of the Association Between Obesity/BMI and
Working Memory by CRP.

β p 95% CI

Obesity
Total effect (path c) −0.0364 <0.001 [−0.0552, −0.0180]
Direct effect (path c’) −0.0254 0.010 [−0.0455, −0.0059]
Indirect effect −0.0110 0.003 [−0.0182, −0.0038]
BMI
Total effect (path c) −0.0314 <0.001 [−0.0502, −0.0125]
Direct effect (path c’) −0.0176 0.103 [−0.0383, 0.0037]
Indirect effect −0.0138 0.002 [−0.0227, −0.0049]

Analyses are adjusted for covariates. SE = standard error; CI = confidence
interval; BMI = body mass index; CRP = C-reactive protein.
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working memory. It should be noted, however, that the effect size of the
association between obesity and lower working memory observed in
our study was small.

Our results are consistent with previous studies that have found
inflammation plays a role in weight-related deficits in other executive
function components (Bourassa and Sbarra 2017; Mac Giollabhui et al.,
2019). For example, in the English Longitudinal Study of Ageing (ELSA)
study, Bourassa and Sbarra (2017) found that greater BMI was in-
directly associated with declines in verbal fluency over 6 years via re-
latively higher levels of CRP. In addition, in a diverse community
sample of urban adolescents, Mac Giollabhui et al. (2019) found that a
higher BMI predicted worse attentional switching via higher levels of
circulating IL-6. Thus, both these results and ours provide preliminary
evidence in support of the idea that obesity-related inflammation may
play a role in obesity-related executive function impairments (for re-
views, see O'Brien et al., 2017; Miller and Spencer, 2014; Nguyen et al.,
2014; Solas et al., 2017; Spyridaki et al., 2016).

Although the current study cannot elucidate the mechanisms un-
derlying the observed association between obesity-related inflamma-
tion and obesity-related working memory impairments, we can spec-
ulate. First, inflammatory activity can activate the hypothalamic-
pituitaryadrenal axis (Silverman and Sternberg, 2012), and leads to
increased circulating cortisol, an important component of the stress
response, which might impair working memory (Shields et al., 2015).
Second, inflammatory activity modulates the kynurenine pathway both
in the periphery and in the brain (Schwarcz et al., 2012), which has
been linked to cognitive deficits (Stone and Darlington, 2013). Third,
proinflammatory cytokines can exert direct effects on their receptors
within the prefrontal cortex (Audet et al., 2011) and hippocampus
(Sparkman et al., 2006), and impair working memory at least in part via
those mechanisms (Sparkman et al., 2006). Finally, impairing working
memory via a more circuitous route, elevated levels a variety of pro-
inflammatory cytokines (e.g., IL-6) in obesity individuals can induce
neuroinflammation (e.g., chronic activation of microglia, brain pro-
duction of inflammatory cytokines) through various pathways (e.g.,
Guillemot-Legris and Muccioli, 2017). Further, neuroinflammation can
disrupt neuronal processes important to cognition (e.g., synaptic plas-
ticity, neurogenesis) (Hao et al., 2016) and affect brain structures such
as the hippocampus (Marsland et al., 2008), frontal cortex (Gu et al.,
2017; Shields et al., 2017; Shobin et al., 2017), presumably impairing
working memory. However, it should be noted that these speculative
mechanisms are derived primarily from animal works, and more re-
search with human participants is needed to determine the mechanisms
underpinning the association between obesity-related inflammation
and obesity-related working memory impairments.

Our results may have important clinical implications, as they may
inform interventions targeted at weight management, as working
memory has been thought to facilitate adherence to weight loss pro-
grams in obesity via keeping weight loss goals—recruited from long-
term memory—in mind when important (Dassen et al., 2018a,b; Dohle
et al., 2018; see also Hofmann et al. 2012). Because we found that in-
flammation statistically accounted for a large portion of the variance
explained in working memory by obesity (though note that the total
variance explained in working memory by obesity was small), our re-
sults could be taken to suggest that anti-inflammatory interventions
may help prevent or manage working memory deficits in obesity. By
improving individuals’ capacities to maintain active mental re-
presentations of (self-regulatory) goals and shield those goals from
distraction, these anti-inflammatory interventions might help obese
individuals to make healthy food choices, adhere to a prescribed diet,
and manage their weight. Further intervention studies are required to
address this possibility.

Our study has several strengths. First, using a theory-driven med-
iation model, it extends prior research by providing the first evidence
that inflammation is one potential biological mechanism underlying the
association between obesity and poor working memory. Furthermore,

this statistical mediation was observed in a large, nationally re-
presentative dataset of U.S. young adults. Importantly, the significance
of the statistical modeling held when weight was analyzed categorically
(i.e., with obesity as a factor) or continuously (i.e., with BMI as a
continuous predictor) as well as when several key potential con-
founding factors were adjusted.

Nevertheless, some limitations of current study should be addressed.
First, the cross-sectional design of our study prohibits conclusions about
causal direction of the associations between obesity, inflammation, and
working memory. As hypothesized by previous reviews (e.g., Miller and
Spencer, 2014), it is conceivable that greater inflammation in obesi-
ty—originating from adipose tissue and changes in gut microbiota
composition—could impair working memory. However, it is also pos-
sible that working memory impairments influence the adoption of
healthy lifestyles and behaviors, contributing to the development of
obesity, and thereby upregulate inflammation through greater adipose
tissue. Working memory or CRP was not assessed in earlier waves of
Add Health data collection, precluding the examination of prospective
associations between obesity, CRP, and working memory. Conse-
quently, future studies should use longitudinal data (e.g., future data of
Add Health) to examine prospective links between obesity, inflamma-
tion, and working memory. Second, we only examined inflammation as
a potential biological mechanism underlying the association between
obesity and poor working memory; future studies should also examine
other potential (biological) mechanisms underlying the association
between obesity and executive function. Third, we used BMI as a proxy
for adiposity, but BMI is a relatively coarse measure of body density,
and it does not consider relevant physical characteristics, such as
muscle mass and anthropometric features (Bergman et al., 2011). Fu-
ture research should replicate and extend this work using more direct
measures of adiposity. Relatedly, we were only able to assess associa-
tions with a single measure of working memory. Future research should
replicate these findings using alternative tests of working memory.
Fourth, because a modified digit span backward task was used to
measure working memory, the reliability and validity of this task were
largely unknown and need to be further investigated. Fifth, because
only working memory was assessed, it is unclear from our study if
obesity-related cognitive deficits are selective to working memory or if
the effects we observed are due to broader obesity-related impairments
in cognition. Sixth, our study was a relatively younger sample, and we
could not assess any developmental effects of obesity or inflammation
on working memory (e.g., Shields et al., 2017). Seventh, the Add Health
protocol did not require participants to fast or provide blood samples at
the same time of day. Future studies should examine these associations
using more standardized procedures. In addition, although we adjusted
for several key covariates, we cannot completely rule out the possibility
of other confounds that might also have influenced the results. Finally,
although we found that inflammation statistically accounted for a large
portion of the variance explained in working memory by obesity, the
total variance explained in working memory by obesity was small.
Future studies should examine whether these small but statistically
significant findings have any practical or real-word significance.

In conclusion, using a sample drawn from a nationally re-
presentative study of U.S. adults, we found that obesity (as well as
greater BMI) was related to increased systemic inflammation, which
was itself related to lower working memory. Critically, we found that
inflammation statistically mediated the association between obesity (as
well as BMI) and working memory. These results therefore suggest that
obesity-related inflammation might be one biological pathway under-
pinning the link between excessive weight and poor working memory.
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